

A Public Health Project funded by the European Commission, DG-SANCO 2005

WP 11: WEB PORTAL

DOCUMENT V1.0

April 2009

NOKLUS

NORWEGIAN QUALITY IMPROVEMENT OF
PRIMARY CARE LABORATORIES
Boks 6165
5892 Bergen- NORWAY
Contact person
Svein Skeie
Tel: +47 51519828
E-mail: svskeie@online.no

B.I.R.O
Best Information through Regional Outcomes

Table of contents

1. INTRODUCTION.. 3

2. OBJECTIVES .. 4

3. MATERIALS AND METHODS .. 5

4. RESULTS ... 6

5. OPTIMISING FOR TRANSFER OF TECHNOLOGY 18

6. SUMMARY .. 18

Appendix 1 Documentation and source code for custom Indicator module

Appendix 2 Documentation and source code for custom dictionary browser
module

WP 11: Web Portal___

__
Page 3

1. Introduction

The BIRO project has developed and demonstrated a model with strategic,
technical, statistical and IT solutions that enable the building of safe multi-
national shared information systems for sensitive clinical data. It has also done
all the work necessary to implement the model for diabetes. The model,
however, is generic and shall be made freely available. The web portal shall
present both the generic mechanisms and the diabetes specific application.
The web portal shall describe the structure of the project, the work and
products of each work package and the partners in the BIRO consortium.
This much could be handled with a standard web application having menu
navigation to texts, diagrams and documents.
In the BIRO model information and results from an operational shared
information system are disseminated via its web portal, largely in the form of
displays of indicators. There will be many indicators and data will be collected
on an on going basis. Without automation of updates the task of keeping
information and results current will be costly and tedious. Integration with the
Report-templates, data dictionaries and clinical knowledge base is required to
provide transparency of what the results are based on. These requirements for
automation, integration and transparency are important for the efficient
operation of an active BIRO type shared information system. It is therefore not
sufficient that the web portal shall just document the project and provide static
examples of indicator presentations. The web portal must also be a custom
programmed operative component in the BIRO model and a generic version of
it must be made available as an open source, easily adaptable, software
component in the BIRO Transfer of Technology collection.

The duality of purpose of the web portal complicates the issue of “who is the
target audience” and thereby the content and the design of the user interface.
Work package 7 (Report templates) made recommendations based on the role
such a web portal would have as part of a sustainable shared information
system. It described distinct provisions for audiences of governance, health
care and research, and people with some reason to seek information on
diabetes. However, although the BIRO project has built all the functionality of a
shared information system it has been a limited project. It does not have a
great deal of data and collection will cease on completion of the project. Its
primary focus has been on solutions, mechanisms and enablement. The most
important products of the project are the generic BIRO model, the application of
that to diabetes and of making these solutions freely available to other longer
term projects that will establish and run sustainable information systems. The
main value of the indicators presented here lies not in the limited information
they provide on the state of diabetes and diabetes care in Europe but in the
functionality they provide for others to use and what they illustrate of
mechanisms and pertinent reports generated by semi-automated data
collection, statistical processing and display. Thus, for this web portal it is
people who have a vested interest in the establishment of sustainable multi-
national shared information systems who are the main audience targeted.
Texts have though been included that attempt to describe the project to any
curious reader.
For subsequent projects like EUBIROD that will use the BIRO model to
establish a sustainable shared information system the focus will be on the data

WP 11: Web Portal___

__
Page 4

they collect and the analyses they produce. Consequently they will have other
audiences and other agendas. Each such project will make their own choices of
how they will relate to their audience and what services they will provide. BIRO
will not decide this for them in advance, so in its dual roles as a description of
the BIRO project and as an operative component designed for transfer of
technology the technical design of this web portal will be confined to providing
core BIRO model functionality plus mechanisms for managing general content
of texts, documents and menus.

2. Objectives

• To present the work and achievements of the completed BIRO project.
• To provide and demonstrate mechanisms for informative and effective
dissemination of results generated by a sustainable shared information system
based on the BIRO model.
• To provide an open source software component for transfer of its technology
at low cost.
• To provide a single point of access to the main products developed by the
BIRO consortium.

WP 11: Web Portal___

__
Page 5

3. Materials and methods

If the BIRO website was to be just a single installation that presented and
demonstrated the BIRO project software tools would have been chosen solely
on considerations of technical excellence and convenience for us as
developers and those who will support it. But the web application has a second
function. It implements behaviour that is important to the indicator displays and
the BIRO model. It contains custom programmed mechanisms and it interacts
with other BIRO applications and software. It is an integral part of the BIRO
model as it will be implemented in each sustainable shared information system.
As such a version of it must be made available as a component in the BIRO
Transfer of Technology software collection. Otherwise every organisation that
chose to implement the BIRO model would have to start from scratch and
develop web applications having equivalent mechanisms and functionality.
Therefore the web portal is required to comply with the policy of BIRO Transfer
of Technology. Thresholds for implementing applications shall be as low as
possible, both in terms of work involved and cost. Not only shall the application,
source code, and documentation be made freely available but recipients shall
not be required to purchase any commercial proprietary software in order to
implement, adapt, or further develop. Because of this only open source tools
and resources were acceptable for building and implementing the web portal
and to the selection criteria was added the requirement that they be readily
available and very widely used and supported.

For the implementation the following technologies were chosen:

Apache HTTP Server
Apache is a free and open source HTTP server application maintained under
the auspices of the Apache Software Foundation. It is run mainly on Unix and
Unix-like operating systems but is available also for a variety of others,
including Windows and Mac OS X. Apache can serve both static and dynamic
pages on the web.
As of March 2009 Apache served over 46% of all websites and over 66% of the
million busiest. (http://news.netcraft.com/archives/2009/03/15/march_2009_web_server_survey)

MySql or PostgreSQL (relational database management system)
Of the serious free open source RDMS systems available MySql is the most
used worldwide and PostgreSQL claims to be the most advanced. Both
provide all the functionality required for the web portal application and a lot
more. BIRO has used PostgreSQL for its other database applications, but the
issue here is a separate web server installation so that is not a decisive factor.
We have used both and the application runs unchanged on either.

Drupal (content management framework)
Drupal is an open source content management framework. It is widely used
and runs on both MySQL and PostgreSQL. It has many modules available,
there is a lot of development going on and it is very easy to install. It consists
of a small core, and gives the developer a comprehensive interface for
implementing custom made modules. The framework gives us content-
management, security, database-connectivity and menu-system. It also gives

WP 11: Web Portal___

__
Page 6

the ability for non-technical people to maintain and update the portal without
any need for coding. (http://www.drupal.org)

PHP
PHP is a widely-used general-purpose scripting language that is especially
suited for web development and can be embedded into HTML. It can be
deployed on most web servers and on almost every operating system and
platform free of charge. PHP is installed on more than 20 million websites and
1 million web servers.
Having chosen Apache and Drupal PHP was a clear choice.

Should some future user of the system already have other databases, content
management frameworks, programming languages etc. that they prefer to use
they are of course at liberty to do so. The documentation and source code
provided will describe mechanisms, essential functionality and how the
application interacts with other BIRO software. This will minimise the effort
required to port and adapt to other technologies.

4. Results

Static content
Static content and mechanisms for management of texts, documents and
menus.

The work of building the web portal has had two phases. The first was building
the basic web application with hierarchal menu navigation to the static texts
and documents that provide information about the BIRO project. The Drupal
content management framework was the primary tool used to do this. It has
facilities and utilities for forming the appearance and layout of the web pages,
security, database-connectivity, managing static menus, inserting texts and
linking to documents etc. These same Drupal facilities will enable people with
only quite modest web building skills to easily modify these aspects of the
application to their own requirements and maintain them. Drupal’s own
documentation explains how to do this. (http://www.drupal.org)

Menu:

The menu is the primary navigation mechanism. It is always present on the
screen. There are relatively few items initially shown but it is hierarchal where
required and allows the user to drill down through layers of categories to the
topic sought.

WP 11: Web Portal___

__
Page 7

Figure 1: Home page

WP 11: Web Portal___

__
Page 8

Menu items

The choice of primary menu items and the static material they accessed were
decided by consensus amongst the partners in the consortium. The menu
items in the top layer are:
◦ Home
◦ Why BIRO
◦ BIRO model
◦ Diabetes info
� Diabetes Indicators
◦ Data dictionary
� Work packages
◦ Project partners
◦ How to participate

 Where a menu item is linked to a single document the task of providing the
document was allocated to a single person or group. These items were:

- A text for the Home page text to capture interest and endorse the
project: (Fabrizio Carinci)

- “Why BIRO”. A common language text to explain the relevance of the
BIRO project. (Peter Taverner)

- “BIRO model”. A common language description of the BIRO model that
explains the key problems encountered when building an international
shared information system for sensitive clinical data, and the solutions
BIRO developed to overcome them. (Peter Taverner)

- “Diabetes info”. A concise description of what diabetes is and its
impact. (Svein Skeie)

For the menu item “Work packages” each partner was required to provide a
short abstract describing the work and results of their work package plus a
document of the full deliverable for their work package. When the “Work
package” menu item is selected it first drops down a list of the work packages
in the project. When a ’work package’ is selected from this the abstract is
displayed. From this the reader can click a link that will fetch and display the
full ‘Deliverable’ document for that work package.

For the menu item “Project Partners” all partners were asked to provide a
short document with relevant information about them selves. This item shows
first a list of the partners and from there the document provided by the partner
selected.

The item “How to participate” does not invite participation in the BIRO project.
That project is complete. Instead it shows some information about the follow up
project EUBIROD and provides a link to its web portal. EUBIROD will use the
BIRO model and the work done by BIRO in applying the model to diabetes to
establish a sustainable European Union shared information system for diabetes
and will be interested in recruiting new partners to fill out its coverage of
Europe. Also those who wish to establish their own shared information system
using the BIRO model will be able to get help there. The partners of the BIRO
consortium are also partners in the EUBIROD project. Considering the generic
nature and wide applicability of the BIRO model it would though make good
sense to maintain a general and independent interface and service for this via
the BIRO web portal.

WP 11: Web Portal___

__
Page 9

The menu items “Diabetes indicators” and “Data dictionary” are not static.
They are programmatically generated by the custom programmed modules for
display of indicators and the browsing of metadata. Those modules build their
menus from data supplied by applications external to the web portal
application.

Indicator presentation.

Design goals:
The results for each indicator will be presented on the web site using a
collection of tables, charts and texts that are specific to each. The issue here is
what qualities are required of the manner of doing this:

Automation: With shared information systems of the type the BIRO model was
designed for data will be collected on an on going basis. Analysis of these data
and updating of the many indicators presented on the web will be done
frequently. Unless automated this job will be tedious and costly.

The ability to establish and maintain the choice of indicators and how they will
be presented without web programmer intervention: It is work done in Clinical-
review, Reports-template and Statistical-engine that is responsible for the
clinical, epidemiological and graphical quality of the indicators. A solution that
allows the work done by those specialists to be expressed directly on the web
without requiring re-programming would simplify the task and reduce the cost of
setting up and maintaining the indicators displayed. Being able to easily and
cheaply make extensive adaptations is also a major factor in the suitability of
the solution as a “Transfer of technology” component.

The custom Drupal module developed for Indicator presentation:
This module provides two services:

• A dynamic menu that provides the reader with an overview of the indicators
that can be viewed and the ability to browse or step through them. (Figure
6) The menu is hierarchal and organised by the same theme chapters and
order as expressed in the Report Templates register. The module
programmatically generates this menu based on the data provided from the
Reports template. When changes are made to the Report Templates the
process to generate the menus must be re-run, but this is easy and quick.

• A page on which the indicator selected from the menu is displayed. The
key to this part is that the module concerns itself solely with display of data
supplied. What it will display, for a given indicator, is supplied as a
collection of “display ready elements”. These elements can be of type text,
table or chart/diagram. Specification of where on the page each element
shall be shown and how big it shall be is also supplied as data. For
positioning and sizing of elements the module operates with a simple grid.
This makes it easy for the person designing the page layouts for the
elements. For each element the position of the top left corner is given as a
column and row coordinate, the width as a number of columns and the
depth as number of rows.

WP 11: Web Portal___

__
Page 10

Figure 2 Example of element layout.

Col = 2

Row = 3
Colspan = 8

Rowspan = 6

Col = 12

Row = 3
Colspan = 8

Rowspan = 6

Col = 2

Row = 10

Colspan = 19
Rowspan = 7

When a new indicator is to be added to those already supported:

• It is named and the justification for its choice is documented with supporting
references (Clinical review).

• The calculation is defined and the list of involved variables listed. (Clinical
review)

• The strata and form of presentation is defined (what type of chart, table or
diagram etc). (Report templates)

• A program is written that will instruct the Statistical Engine how to access
the primary data, perform the data processing and statistical analysis
required, and generate the output required as ‘display-ready’ elements.
(Charts, tables, diagrams)

• Any other ‘display-ready’ elements required are created. For example:
blocks of explanatory text. (Report templates)

• A file name is registered, for each display element, for where the content of
that element will be stored. (Report templates)

• The layout of the elements that will make up the presentation of the
indicator on the web page is specified. (Report templates)

All of this will be done in the general data system for the information system
and the data will be stored in its database.

When the collection of indicator base data has been changed the web portal
“Indicator presentation module” needs to be re-configured. To do this, the
layout specifications for each display element are collected from the Report
templates register and delivered to the web application. The module’s
configuration process is then invoked. This will generate a new menu and
prepare the module for actual display. The module is now capable of showing
each indicator presentation. For each indicator it has a list of all the elements in
the display. For each element it has the pathname of the file containing the
content of the element and the specifications for its position and size on the

WP 11: Web Portal___

__
Page 11

page. This configuration process need be repeated only when the data it
depends on from the Report templates register are changed.

Updating the results presented on the web can be done whenever and as often
as desired simply by running the Statistical Engine programs. The definitions of
the indicator and of what to produce as output are built into the program. One
program is run for each indicator and each program will generate one or more
display elements (tables or charts). Each element generated is written to its
specified file, which is where the web application will read from when it needs it.
Processing the data can be done whenever it is appropriate because of new
data or defined time intervals etc. and that which is displayed on the web will
thus be automatically updated. The web application is not in any way involved,
it just displays what is in the files without knowing when or how it got there.

Technical details

When this module is installed it will create two working tables and generate an
administration screen for managing the configuration process (Figure 3.).

Home >> Site configuration >> BIRO module settings

BIRO module settings

Load xml-config file

� Show border on tables on indicator-pages

Reset to defaultsSave configuration

Figure 3. Configuration management screen

The configuration specifications for indicators are held in xml blocks in the
Reports Template register, one for each indicator. When specifications are
added or changed the configuration process for the module must be run. The
first step is to collect all the indicator xml blocks into a single xml document and
make it available to the web application. A schema has been defined for this

“indicator configuration data document” (Figure 4).

Currently building the xml data document and uploading it to the server is done
manually.
The remaining steps are done programmatically and are invoked via the
configuration management screen provided by the module. The xml data
document is validated against the schema. If valid, the module will traverse the
xml and update the two tables in the database created for this. The indicator
menus will then be rebuilt based on the new data. If the xml is not valid an error
will be displayed and the configuration will not be changed.

WP 11: Web Portal___

__
Page 12

Figure 4 Schema defining the indicator configuration data document

WP 11: Web Portal___

__
Page 13

In the xml configuration block the content of each element is specified as the
pathname of a file. The content of each file is “display ready” and requires only
to be positioned and sized. Files for text and table elements contain html.
Image elements contain a picture. It is this feature that enables programmatic
updating of indicator displays as part of the statistical
engine ‘refresh with new data’ process. The statistical engine generates output
for the web as ‘display ready’ tables and charts and writes them to the
designated location using filenames specified in the xml configuration blocks.
With each reprocessing of the data the content of these files is replaced. The
web indicator module simply displays what is currently there. The output to be
generated by the statistical engine for each indicator is specified as part of the
Report Templates.
To define the layout of the indicators the following information is required:

–––
Name Usage Description
–––
Chapter ID Mandatory The chapter
Name Mandatory The name of the indicator
Text Optional Descriptive text
Header Optional Header-text for indicator
Footer Optional Footer-text for indicaor
Statistical Optional Type of output (histogram, line, etc)
Strata Optional
Sortorder Mandatory The order in which the indicators
 will show in menu
–––

For each element specified for an indicator the following information is required:

–––
Name Usage Description
–––
Chapter ID Mandatory The chapter ID. References
 the chapterid in the corresponding
 indicator
Type Mandatory image, text or table
Filename Mandatory The name of the file containing the data.
Row Mandatory
Column Mandatory
Rowspan Optional Default 1
Column-span Optional Default 1
Vieworder Mandatory Display-order of element.
Width Optional Applies only to images.
Height Optional Applies only to images.
Sequence Optional If type is table, this attribute can be used
 to identify which table to pick from file, if
 the file contains more than one table.
–––

WP 11: Web Portal___

__
Page 14

Figure 5. An example of an xml configuration file

<?xml version="1.0" encoding="UTF-8"?>
<!--Sample XML file generated by XMLSpy v2008 sp1 (http://www.altova.com)-->
<biro_indicators xsi:noNamespaceSchemaLocation="indicators.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <chapter id="1">
 <name>Demographic characteristics</name>
 </chapter>
 <chapter id="1.1">
 <name>Age (Classes)</name>
 <text/><header/><footer/>
 <stat_output>histogram</stat_output>
 <strata>Gender</strata>
 <elements>
 <element order="1">
 <type>image</type>
 <filename>1_1.png</filename>
 <col>1</col>
 <colspan>1</colspan>
 <row>1</row>
 <rowspan>1</rowspan>
 <width>50%</width>
 <height>50%</height>
 </element>
 <element order="2">
 <type>table</type>
 <filename>1_1.html</filename>
 <col>1</col>
 <colspan>1</colspan>
 <row>2</row>
 <rowspan>1</rowspan>
 </element>
 <element order="3">
 <type>text</type>
 <filename>desription1_1.html</filename>
 <col>1</col>
 <colspan>1</colspan>
 <row>3</row>
 <rowspan>1</rowspan>
 </element>
 </elements></chapter>
 <chapter id="1.2">
 <name>Gender</name>
 <text/><header/><footer/>
 <stat_output>histogram</stat_output>
 <strata>Age</strata>
 <elements>
 <element order="1">
 <type>image</type>
 <filename>1_2.png</filename>
 <col>1</col>
 <colspan>1</colspan>
 <row>1</row>
 <rowspan>1</rowspan>
 <width>50%</width>
 <height>50%</height>
 </element>
 <element order="2">
 <type>table</type>
 <filename>1_2.html</filename>
 <col>1</col>
 <colspan>1</colspan>
 <row>2</row>
 <rowspan>1</rowspan>
 <sequence>2</sequence>
 </element>
 elements>
 </chapter>
</biro_indicators

WP 11: Web Portal___

__
Page 15

All the menu items in the Indicator menu link to the indicator module. The
section of the indicator data to display is given to the module as a parameter.
For example: “http://<hostname>/?q=biro/1/1”, (where “biro” is the name of the
Drupal indicator module), points to the module with the indicator “1.1” as a
parameter. The module queries the biro_indicators table for the specified
indicator. If found it then queries the biro_data table for the elements to show. It
generates the html code needed for laying out the elements according to the
settings for each element and returns this to the Drupal engine. The indicator
menus (Figure 6) are rebuilt each time the configuration process is run.

Figure 6: Example of indicator display accessed via menu selection. For each
indicator display the number of elements used is not restricted. That which
does not fit on the visible page can be made visible by scrolling. In the
example shown there are two more charts below that which is shown on the
screen.

Documentation and source code for this module can be viewed in appendix 1

WP 11: Web Portal___

__
Page 16

Browsers for data dictionaries
Transparency is a vital aspect of quality assurance of systems that process
data and present results. A design goal of the web portal was to make provision
for this. Some of the relevant information will be in documents that explain the
essential features and mechanisms of the system or provide background
information on the partner’s data sources. Much of the essential data will be, or
should be, in the form of ‘dictionaries’. For example: definitions of variables
and indicators, documentation from each partner of their compliance with the
standard variable definitions etc. Data of this type should not be buried in large
documents. Such dictionaries should, at the very least, be made browser able.
‘Dictionary browsing’ however makes just one category of information available
at a time and each item within it must be searched for. In some contexts, like
viewing and evaluating indicators, a single click by the user should suffice to
bring into view a collection of those metadata most relevant to enhance the
understanding of that indicator and to enable evaluation of the quality of the
underlying data. A custom Drupal module has been developed which provides
a mechanism both for ‘stand alone’ browsing of data dictionaries accessed via
the menu and a simple form of bundling metadata with indicators so that for
each indicator its definition metadata and the definitions of the variables
involved are linked to and can be directly accessed from the display of the
indicator.

Custom Drupal module for browsing data dictionaries
This module provides a generic mechanism for programmatically generating a
browser within the web application from a structured file of data. Intervention
from a web programmer is not required. The menu generated and the data
displayed on selection of a menu item are determined entirely by the data file
provided. This offers an easy way of providing access to dictionaries of base
data. It is particularly useful where the data are labile. The data can be
maintained in some application external to the web and the module will
programmatically update the browser on demand. This ability to generate
‘within web portal browsers’ without programmer intervention also contributes
significantly to the adaptability of the web portal and enhances its value as a
‘transfer of technology’ component.

The solution implemented in the web portal provides browsers for two
dictionaries; (i) the common variable set and (ii) the definitions of the indicators.
Included in the in the indicator metadata is a list of the variables involved and
from this the reader can drill down to their definitions by clicking on a variable.
The display will then jump to that variable definition displayed in the variable
dictionary. For greater reader convenience these metadata are also accessible
directly from the displays of indicator results. When viewing an indicator result
the reader can click a button on that page which will cause a jump to the
Indicator definitions.

The solution for “context bundling of metadata” implemented on the BIRO web
portal is somewhat restricted and rudimentary but it is a good start to an
important function. Subsequent projects, like EUBIROD, can be expected to
develop enhanced versions that allow access to a greater range of metadata
and improve the convenience and presentation of the metadata associated with
each indicator display.

WP 11: Web Portal___

__
Page 17

Technical details
The module requires that a manually initiated configuration process is run
initially and whenever changes in the underlying data require it. For this the
module currently requires that data for the dictionaries are provided in xml
documents uploaded to a designated area on the web server. The configuration
process will then use these to populate its relational tables in the web-server
database and will then generate the menu required for browsing. The module
provides an administration screen for this.
For each dictionary for which a browser is generated the configuration process
will add a name to a list that the reader can choose from. These will be shown
when the reader selects the menu item “Data dictionary”.

Database tables for the Data dictionary module:

biro_datadict

––
Name Datatype Key Description
–––
Reference varchar(255) PK Variable (Ex.BIRO001)
Field_name varchar(255) Variablename (Ex. PAT_ID)
Parameter varchar(255) Description of variable (Ex. PatientID)
Datatype varchar(255)

––

biro_datadict_enum

––

Name Datatype Key Description

––
Reference varchar(255) PK1 Variable (Ex. BIRO001)
Enum_code Int PK2 Ex. 1
Value varchar(255) Value of code (Ex Type 1)

––

biro_crossref

––

Name Datatype Key Description

––

Chapter varchar(255) PK Ex 1.1
Target varchar(255) Reference to indicator
Name Text Ex Age (Classes)

––

biro_crossref_stratum

––

Name Datatype Key Description

––

Chapter varchar(20) PK1 Ex 1.1
Stratum varchar(40) PK2 Reference to variable, Ex DOB

––

biro_crossref_output

––

Name Datatype Key Description

––

Chapter varchar(20) PK1 Ex. 1.1
Output varchar(20) PK2 Output-type, ex Histogram

––
Documentation and source code for this module can be viewed in appendix 2

WP 11: Web Portal___

__
Page 18

5. Optimising for Transfer of Technology

To make the application suitable as an Open Source component in the BIRO
“transfer of technology” collection there are two major considerations. One is to
use exclusively Open Source applications and resources to build and
implement it. The other is to make adaptability a strong feature. Make it easy
for others to modify a copy of the application to suit their needs while still
retaining the core functionality that is essential to the BIRO model.
While static content can readily be changed using the Web Content
Management framework the core BIRO functionality lies in the custom
programmed modules.
Both custom modules have been designed so that what they display is
determined by data that has been generated and supplied to them by
applications external to the web application. With the display of indicators for
example, not only is the choice of which indicators to display and the content
and layout of each presentation determined completely by data supplied from
outside the web, but because display elements are supplied in “display ready”
form also things like the quality of chart and diagram images etc. are
determined outside the web application and no re-programming of the web
modules is required. What these custom modules show and express can thus
be easily and radically changed without programming. Only when new or
enhanced functionality is required will there be a need for programming. When
that happens it would be of great value if the resulting enhancements or
variations were also made available as Open Source software.

6. Summary

The Web Portal developed in WP11:

• Describes the BIRO project and the BIRO model.

• Demonstrates the functioning BIRO model as applied to diabetes

• Has developed a mechanism for informative, low overhead presentation of
frequently updated results.

• Has developed a mechanism for generating browser interfaces for data
dictionaries.

• Is generic, easily adaptable and technically suitable as a ‘Transfer of
technology’ component.

As such WP11 has achieved its objectives.

The BIRO project is to be followed by the EUBIROD project which will establish
a sustainable shared information system for diabetes in Europe. EUBIROD will
use both the generic BIRO model and the extensive work done in BIRO on
applying that model to diabetes. But while EUBIROD has been enabled by
BIRO it is a distinct project with its own objectives. Its focus will be on the data
it collects and analyses and what uses are made of them. As such it will create
its own web portal and can do this by adapting and enhancing the BIRO web
portal component. The BIRO web portal will be retained to present the work
and achievements of the BIRO project.

The ultimate goal of the BIRO initiative has been the establishment of a
sustainable shared diabetes information system for the European Union. It is
the tightly related follow up project EUBIROD that shall realise the final stage of

WP 11: Web Portal___

__
Page 19

this. In the process software from BIRO will be significantly enhanced and
added to. Thus EUBIROD will complete BIRO also in another respect. By the
time EUBIROD is fully functional the software made available via BIRO
Transfer of Technology should be much improved, thoroughly tested, and there
should be much more of it. This will include significant enhancements to the
web portal component which then will be an example of a single purpose tested
and functional website for a sustainable shared information system.
Some examples of things that will affect existing or require new software are:

- The structure of data repositories in BIRO have been strongly influenced
by the work having been done in parallel and largely autonomous work
packages. In EUBIROD these should be coalesced into a cohesive and
more functional data base.

- Considerable development of indicator presentation and other report
forms is expected. To handle this substantial software enhancement is
expected.

- Applications that simplify the work required to administer Report
Templates and primary data dictionaries will probably be developed.

- Other functions, like “E-Learning” will be made available.
- It is possible that applications that can make the primary harvesting of

data easier and more standardised could be developed. (After all, the
most critical factor for success with an information system is obtaining
enough good data).

- And more.
EUBIROD will directly apply the BIRO model and its specific application to
diabetes, as could others who may wish to establish a shared information
system for diabetes for some other region. However the principles of the model,
its examples and the open source software it makes available can be applied
equally well to other diseases. As such it would be advantageous to promote
the BIRO model on a website where the model, the examples, the software
collection and links to related projects are the primary focus rather than on one,
like EUBIROD, where the focus will be on the data collected for a particular
disease and the insights gleaned from them.

Making available useful generic methods and nurturing the concept and
practice of Open Source software can reduce costs in the health care sector. It
can make feasible things for which thresholds were formerly too high. It would
help the proliferation of methods like BIRO, which in addition to their primary
value as information systems would also promote acceptance of international
standards and ‘Best practice’ methods.
All of which makes a strong case for providing support for a web portal that
can:

• Accumulate links to other related projects,

• Accumulate or link to new or enhanced Open Source software,

• Promote and foster an Open Source community for projects and work of
this type.

This could be done either by extending and supporting the BIRO web portal so
that it can provide this service or by establishing a new web portal for that sole
purpose.

The test installation of the BIRO web portal can be viewed at //BIRO.tysseit.no

Appendix 1___

__
Page 20

Appendix 1

Documentation and source code for custom Indicator module

Info-file:

; Id
name = Biro Data
description = A block which shows the data in the BIRO data-tables.
core = 6.x

Install-file:

<?php

/**
 * Implementatin of hook_install
 *
 */
function biro_install(){
 drupal_install_schema('biro');
 db_query("insert into menu_custom values ('menu-biro','Biro Indicators','Biro
Indicators')");
}

/**
 * Implementation of hook_uninstall
 *
 */
function biro_uninstall(){
 db_query("delete from menu_custom where menu_name='menu-biro'");
 drupal_uninstall_schema('biro');
}

/**
 * Implementation of hook_schema
 *
 */
function biro_schema(){
 $schema['biro_indicators'] = array(
 'fields' => array(
 'header' => array('type' => 'varchar', 'length' => 255,'not null' => FALSE),
 'text' => array('type' => 'text', 'not null' => FALSE),
 'footer' => array('type' => 'varchar', 'length' => 255, 'not null' => FALSE),
 'chapter' => array('type' => 'varchar', 'length' => 255, 'not null' => TRUE),
 'indicator' => array('type' => 'text', 'not null' => FALSE),
 'stat_output' => array('type' => 'varchar', 'length' => 255, 'not null' => FALSE),
 'strata' => array('type' => 'varchar', 'length' => 255, 'not null' => FALSE),
 'sortorder' => array('type' => 'int', 'not null' => FALSE)),
 'primary key' => array('chapter'),

Appendix 1___

__
Page 21

);

 $schema['biro_data'] = array(
 'fields' => array(
 'chapter' => array('type' => 'varchar', 'length' => 255, 'not null' => TRUE),
 'type' => array('type' => 'varchar', 'length' => 255, 'not null' => FALSE),
 'filename' => array('type' => 'varchar', 'length' => 255, 'not null' => FALSE),
 'row' => array('type' => 'int', 'not null' => FALSE),
 'col' => array('type' => 'int', 'not null' => FALSE),
 'rowspan' => array('type' => 'int', 'not null' => FALSE),
 'colspan' => array('type' => 'int', 'not null' => FALSE),
 'view_order' => array('type' => 'int', 'not null' => TRUE),
 'width' => array('type' => 'varchar', 'length' => 255, 'not null' => FALSE),
 'height' => array('type' => 'varchar', 'length' => 255, 'not null' => FALSE),
 'sequence' => array('type' => 'int', 'not null' => FALSE)),
 'primary key' => array('chapter', 'view_order'),
);

 return $schema;
}

Module-file:

<?php
// $Id
/**
 * @file
 * Shows BIRO-indicators. The indicator to show is given as a variable, with chapter
name.
 * Ex to show biro indicator 1.1.1 : ?p=biro/1.1.1
 */
/**
 * Implementation for hook_help
 *
 * @param unknown_type $path
 * @param unknown_type $arg
 * @return unknown
 */
function biro_help($path, $arg) {
 $output = '';
 switch ($path) {
 case "admin/help#biro":
 $output = '<p>'. t("Biro indicators.") .'</p>';
 break;
 }
 return $output;
}

/**
 * Implementation for hook_perm
 *

Appendix 1___

__
Page 22

 * @return unknown
 */
function biro_perm() {
 return array('access biro content');
}

/**
 * Implementation of hook_all
 *
 * @param string $chapter
 * @return string
 */
function biro_all($chapter) {

 $dir = "sites/default/files/biro/elements/";
 // Query for fetching the given indicator
 $indicator_query = db_query("SELECT * from biro_indicators where chapter =
'%s'", $chapter);

 // Did the query return any records?
 if ($indicator = db_fetch_object($indicator_query)) {
 // Put header and text at the top
 $page_content .= $indicator->header;
 $page_content .= $indicator->text;

 $tok = strtok($chapter, ".");
 $path = "/" . $tok;
 while ($tok !== false) {
 $path .= "/" . $tok;
 $tok = strtok(".");
 }

 $page_content .= '<p>Indicator
Definition</p>';

 // Query for fetching the elements in this indicator
 $data_query = db_query ("SELECT * FROM biro_data where chapter =
'%s' order by view_order" , $chapter);

 $has_elements = false;

 // Loop on results from query on elements, and insert them in an array
 $elements_test = array();
 while ($data = db_fetch_object($data_query)) {
 $has_elements = true ;

 $elements_test[$data->row][$data->col]['pos'] = $data-
>row.'.'.$data->col;
 $elements_test[$data->row][$data->col]['type'] = $data->type ;
 $elements_test[$data->row][$data->col]['filename'] = $data-
>filename ;

Appendix 1___

__
Page 23

 $elements_test[$data->row][$data->col]['colspan'] = $data-
>colspan ;
 $elements_test[$data->row][$data->col]['rowspan'] = $data-
>rowspan ;
 $elements_test[$data->row][$data->col]['orderview'] = $data-
>rowspan ;
 if ($data->type == 'image') {
 $elements_test[$data->row][$data->col]['width'] = $data-
>width ;
 $elements_test[$data->row][$data->col]['height'] = $data-
>height ;
 }
 $elements_test[$data->row][$data->col]['sequence'] = $data-
>sequence ;
 }

 // Did we find any elements for indicator?
 if ($has_elements) {

 if (variable_get('biro_border_width', 0)) {
 $page_content .= '<p><table border="2">' ;
 } else {
 $page_content .= '<p><table>' ;
 }

 foreach ($elements_test as $rows) {
 $page_content .= '<tr>';
 foreach ($rows as $cols) {
 if ($cols['type'] == "image") {
 $cell_content = '<img width="' .
$cols['width'] . '" height="' . $cols['height'] .'" src="'. $dir . $cols['filename'] . '" />';
 } else if ($cols['type'] == "table" || $cols['type'] ==
"text") {
 $tablefile = $dir. $cols['filename'];
 $fh = fopen($tablefile, 'r') ;
 $filedata = fread($fh, filesize($tablefile));
 fclose($fh);
 if ($cols['type'] == "table" &&
$cols['sequence'] != null) {
 $pos1 = 0;

 for ($i=0;
$i<$cols['sequence'];$i++){
 $pos1 =
stripos($filedata,'<TABLE',$pos1) + 1;
 }
 $pos2 =
stripos($filedata,'<TABLE',$pos1 + 6);

 if ($pos2 != ""){

Appendix 1___

__
Page 24

 $cell_content =
substr($filedata,$pos1-1,$pos2-$pos1);
 } else {
 $cell_content =
substr($filedata,$pos1-1);
 }
 } else {
 $cell_content = $filedata;
 }
 }
 $page_content .= '<td rowspan="'.
$cols['rowspan'] .'" colspan="' . $cols['colspan'] . '">' . $cell_content;
 }
 $page_content .= '</tr>';
 }
 $page_content .= '</table>' ;
 }

 $page_content .= $indicator->footer;
 } else {
 $page_content .= 'No indicator found v1.0!';
 }
 return $page_content ;
}

function biro_menu() {
 $items = array();

 $items['menu-biro'] = array (
 'title' => 'BIROBIROBIRO',
 'description' => 'BIROBIROBIRO',
 'access arguments' => array('access biro content'),
 'type' => MENU_IS_ROOT
);

 $items['admin/settings/biro'] = array (
 'title' => 'BIRO module settings',
 'description' => 'Description of your BIRO settings control',
 'page callback' => 'drupal_get_form',
 'page arguments' => array('biro_admin'),
 'access arguments' => array('access administration pages'),
 'type' => MENU_NORMAL_ITEM
);

 $indicator_query = db_query("SELECT * from biro_indicators order by
sortorder");

 while ($data = db_fetch_object($indicator_query)) {

 $tok = strtok($data->chapter, ".");
 $path = "/" . $tok;
 while ($tok !== false) {

Appendix 1___

__
Page 25

 $path .= "/" . $tok;
 $tok = strtok(".");
 }

 $items["biro" . $path] = array(
 'title' => $data->chapter . ". " . substr($data->indicator,0,200),
 'description' => $data->indicator,
 'page callback' => 'biro_all',
 'page arguments' => array($data->chapter),
 'access arguments' => array('access biro content'),
 'menu_name' => 'menu-biro',
 'weight' => $data->sortorder,
 'type' => MENU_NORMAL_ITEM
);
 }
 return $items;
}

function validate() {
 // Validate current configuration-file
 $dir = "sites/default/files/biro/";
 $xmlfile = "biro_configuration.xml";
 $xmlschema = "biro_schema.xsd";

 $dom = new DOMDocument();
 //Load the xml document in the DOMDocument object
 $dom->Load($dir . $xmlfile);

 if (!$dom->schemaValidate($dir . $xmlschema)) {
 die ("$xmlfile is invalid!! Please correct file.\n");
 }
}

/**
 * Load configuration from xml-file
 *
 * @param unknown_type $form
 * @param unknown_type $form_state
 */
function load_configuration ($form, &$form_state)
{
 function sortorder($var) {
 $data = strrev($var);
 $fact = 1;
 $tok = strtok($data, ".");
 $sum = 0;
 while ($tok !== false) {
 $sum += strrev($tok) * $fact;
 $tok = strtok(".");
 $fact = $fact * 100;
 }
 return $sum;

Appendix 1___

__
Page 26

 }

 function isnull($str)
 {
 if (is_null($str)) {
 $ret = "NULL";
 } else {
 $ret = "'" . $str . "'";
 }
 return $ret;
 }

 function isvalnull($val)
 {
 if (is_null($val)) {
 $ret = "NULL";
 } else {
 $ret = $val;
 }
 return $ret;
 }

 db_query("delete from biro_data");
 db_query("delete from biro_indicators");

 validate();

 $dom = new DOMDocument();
 $dom->load('sites/default/files/biro/biro_configuration.xml');

 // Loop on all all chapters
 foreach ($dom->getElementsByTagname('chapter') as $chapter) {

 // Element?
 if ($chapter instanceof DOMElement) {
 // Find chapter-id
 $id = $chapter->getAttribute('id');

 // Prepare array
 $ch_array = array();
 $ch_array['elements_index'] = 0;
 $ch_array['chapter'] = $id;

 // Loop on all nodes in a chapter
 foreach (($chapter->childNodes) as $chapterNode) {

 if ($chapterNode instanceof DOMElement) {

 // if not an element...
 if ($chapterNode->tagName <> 'elements') {

 // Add values to array

Appendix 1___

__
Page 27

 switch($chapterNode->tagName) {
 case 'name': $ch_array['indicator'] =
$chapterNode->nodeValue; break;
 case 'text': $ch_array['text'] =
$chapterNode->nodeValue;break;
 case 'header': $ch_array['header'] =
$chapterNode->nodeValue;break;
 case 'footer': $ch_array['footer'] =
$chapterNode->nodeValue;break;
 case 'stat_output':
$ch_array['stat_output'] = $chapterNode->nodeValue;break;
 case 'strata': $ch_array['strata'] =
$chapterNode->nodeValue;break;
 }
 } else {
 // Elements. Load them into an array
 foreach (($chapterNode-
>getElementsByTagName('element')) as $elements) {
 if ($elements instanceof
DOMElement) {
 $element_array = array();
 $element_array['vieworder']
= $elements->getAttribute('order');
 $element_array['type'] =
$elements->getElementsByTagName ('type')->item(0)->nodeValue;
 $element_array['filename'] =
$elements->getElementsByTagName ('filename')->item(0)->nodeValue;
 $element_array['col'] =
$elements->getElementsByTagName ('col')->item(0)->nodeValue;
 $element_array['colspan'] =
$elements->getElementsByTagName ('colspan')->item(0)->nodeValue;
 $element_array['row'] =
$elements->getElementsByTagName ('row')->item(0)->nodeValue;
 $element_array['rowspan'] =
$elements->getElementsByTagName ('rowspan')->item(0)->nodeValue;
 $element_array['sequence']
= $elements->getElementsByTagName ('sequence')->item(0)->nodeValue;
 if ($element_array['type'] ==
'image') {

 $element_array['width'] = $elements->getElementsByTagName ('width')-
>item(0)->nodeValue;

 $element_array['height'] = $elements->getElementsByTagName ('height')-
>item(0)->nodeValue;
 }
 }
 $ch_array['elements_index'] += 1;

 $ch_array['elements'][$ch_array['elements_index']] = $element_array;
 }
 }

Appendix 1___

__
Page 28

 }
 }
 }

 // Ok, xml-file is read. Now generate sql-statements
 $query = "insert into biro_indicators
(chapter,header,text,footer,indicator,stat_output,strata,sortorder)values(" ;
 $query .= isnull($ch_array['chapter']) . ",";
 $query .= isnull($ch_array['header']) . ",";
 $query .= isnull($ch_array['text']) . ",";
 $query .= isnull($ch_array['footer']) . ",";
 $query .= isnull($ch_array['indicator']) . ",";
 $query .= isnull($ch_array['stat_output']) . ",";
 $query .= isnull($ch_array['strata']) . ",";
 $query .= sortorder($ch_array['chapter']) . ")";
 db_query($query);

 for ($idx = 1; $idx <= $ch_array['elements_index']; $idx += 1) {
 $dataquery = "insert into biro_data (
chapter,type,filename,row,col,rowspan,colspan,width,height,view_order,sequence)
values (" ;
 $dataquery .= isnull($ch_array['chapter']) . ",";
 $dataquery .= isnull($ch_array['elements'][$idx]['type']) . ",";
 $dataquery .= isnull($ch_array['elements'][$idx]['filename']) . ",";
 $dataquery .= isvalnull($ch_array['elements'][$idx]['row']) . ",";
 $dataquery .= isvalnull($ch_array['elements'][$idx]['col']) . ",";
 $dataquery .= isvalnull($ch_array['elements'][$idx]['rowspan']) .
",";
 $dataquery .= isvalnull($ch_array['elements'][$idx]['colspan']) .
",";
 $dataquery .= isnull($ch_array['elements'][$idx]['width']) . ",";
 $dataquery .= isnull($ch_array['elements'][$idx]['height']) . ",";
 $dataquery .= isnull($ch_array['elements'][$idx]['vieworder']) .
",";
 $dataquery .= isnull($ch_array['elements'][$idx]['sequence']) .
")";
 db_query($dataquery);
 }
 }
}

/**
 * Implement hook_admin
 *
 * @return unknown
 */
function biro_admin() {

 $form['Load'] = array(
 '#type' => 'submit',
 '#value' => 'Load xml-config file',

Appendix 1___

__
Page 29

 '#submit' => array('load_configuration'),
);

 $form['biro_border_width'] = array(
 '#type' => 'checkbox',
 '#title' => t('Show border on tables on indicator-pages'),
 '#default_value' => variable_get('biro_border_width', 0),
);
 // $form['biro_border_width'] = array(
 // '#type' => 'checkboxes',
 // '#title' => t('Show borders in indicator-tables'),
 // '#options' => array(t('Show border')),
 // '#default_value' => variable_get('biro_border_width', array('TRUE')),
 //);
 return system_settings_form($form);
}

?>

Appendix 2___

__
Page 30

Appendix 2

Documentation and source code for custom dictionary browser module

Info-file:

; Id
name = Biro DataDictionary
description = A block which shows the Biro datadictionary
core = 6.x

Install-file:

<?php

/**
 * Implementation of hook_install
 *
 */
function datadictionary_install(){
 watchdog("DEBUG","datadictionary_install");
 drupal_install_schema('datadictionary');
}

/**
 * Implementation of hook_uninstall
 *
 */
function datadictionary_uninstall(){
 watchdog("DEBUG","datadictionary_uninstall");
 drupal_uninstall_schema('datadictionary');
}

/**
 * Implementation of hook_schema
 *
 */
function datadictionary_schema(){
 watchdog("DEBUG","datadictionary_schema");
 //datadictionary.xml
 $schema['biro_datadict'] = array(
 'fields' => array(
 'reference' => array('type' => 'varchar', 'length' => 255,'not null'
=> TRUE),
 'field_name' => array('type' => 'varchar', 'length' => 255, 'not
null' => TRUE),
 'parameter' => array('type' => 'varchar', 'length' => 255, 'not null'
=> TRUE),
 'datatype' => array('type' => 'varchar', 'length' => 255, 'not null'
=> TRUE),
 'enum_code' => array('type' => 'int', 'not null' => FALSE),
 'clinicaldefinition' => array('type' => 'text', 'not null' => FALSE),

Appendix 2___

__
Page 31

 'units' => array('type' => 'varchar', 'length' => 255, 'not null' =>
FALSE)),
 'primary key' => array('reference'),
);
 //datadictionary.xml
 $schema['biro_datadict_enum'] = array(
 'fields' => array(
 'reference' => array('type' => 'varchar', 'length' => 255,'not null'
=> TRUE),
 'enum_code' => array('type' => 'int', 'not null' => TRUE),
 'value' => array('type' => 'varchar', 'length' => 255,'not null' =>
TRUE)),
 'primary key' => array('reference', 'enum_code'),
);
 //WP7CrossReference.xml
 $schema['biro_crossref'] = array(
 'fields' => array(
 'chapter' => array('type' => 'varchar', 'length' => 255,'not null' =>
TRUE),
 'target' => array('type' => 'varchar', 'length' => 255,'not null' =>
TRUE),
 'name' => array('type' => 'text', 'not null' => FALSE),
 'indicatortext' => array('type' => 'text', 'not null' => FALSE),
 'numerator' => array('type' => 'varchar', 'length' => 255, 'not null'
=> FALSE),
 'denominator' => array('type' => 'varchar', 'length' => 255, 'not
null' => FALSE),
 'source' => array('type' => 'varchar', 'length' => 255, 'not null' =>
FALSE),
 'algorithmcalculation' => array('type' => 'text', 'not null' =>
FALSE),
 'algorithmoutput' => array('type' => 'text', 'not null' => FALSE)),
 'primary key' => array('chapter'),
);
 //WP7CrossReference.xml
 $schema['biro_crossref_stratum'] = array(
 'fields' => array(
 'chapter' => array('type' => 'varchar', 'length' => 20,'not null' =>
TRUE),
 'stratum' => array('type' => 'varchar', 'length' => 40,'not null' =>
TRUE)),
 'primary key' => array('chapter', 'stratum'),
);
 //WP7CrossReference.xml
 $schema['biro_crossref_output'] = array(
 'fields' => array(
 'chapter' => array('type' => 'varchar', 'length' => 20,'not null' =>
TRUE),
 'output' => array('type' => 'varchar', 'length' => 40,'not null' =>
TRUE)),
 'primary key' => array('chapter', 'output'),
);

Appendix 2___

__
Page 32

 return $schema;
}

Module-file:

?php
// $Id
/**
 * @file
 */
/**
 * Implementation for hook_help
 *
 * @param unknown_type $path
 * @param unknown_type $arg
 * @return unknown
 */
function datadictionary_help($path, $arg) {
 watchdog("DEBUG","datadictionary_help");
 $output = '';
 switch ($path) {
 case "admin/help#datadictionary":
 $output = '<p>'. t("Biro Datadictionary.") .'</p>';
 break;
 }
 return $output;
}

/**
 * Implementation for hook_perm
 *
 * @return unknown
 */
function datadictionary_perm() {
 watchdog("DEBUG","datadictionary_perm");
 return array('access biro content');
}

/**
 * Implementation of hook_all
 *
 * @param string $chapter
 * @return string
 */
function datadictionary_all($chapter) {

 $qry = db_query("select * from biro_crossref where chapter='$chapter'");

Appendix 2___

__
Page 33

 $indicator_query = db_query("SELECT * from biro_crossref order by
chapter");

 $page_content = '<table border="1" valign="top">';
 $page_content .=
'<tr><td>Chapter</td><td>Indicator</td></tr>';

 while ($data = db_fetch_object($indicator_query)) {

 $tok = strtok($data->chapter, ".");
 $path = "/" . $tok;
 while ($tok !== false) {
 $path .= "/" . $tok;
 $tok = strtok(".");
 }
 if ($data->chapter == $chapter) {

 $page_content .= '<tr bgcolor="lightgreen"><td>'.$data-
>chapter.'<td>'.$data->name.':
';
 $page_content .= '<table border="2" valign="top"
bgcolor="lightyellow"><tr><th>Output<th>Stratum<th>Numerator<th>Denominator<
th>Source<th>Algorithm</tr>';
 //$page_content .= '<tr><td width="20%">';
 $page_content .= '<tr><td>';

 $output_query = db_query("select output from
biro_crossref_output where chapter='$chapter'");
 while ($output_data = db_fetch_object($output_query)) {
 $page_content .= $output_data->output . '
';
 }
 $page_content .= '</td><td>';

 $stratum_query = db_query("select stratum from
biro_crossref_stratum where chapter='$chapter'");
 while ($stratum_data = db_fetch_object($stratum_query)) {
 $page_content .= 'stratum.'">' . $stratum_data-
>stratum . '
';
 }

 $page_content .= '</td><td>' . $data->numerator . '</td><td>' .
$data->denominator . '</td><td>' . $data->source;
 $page_content .= '</td><td>' . $data->algorithmcalculation .
'</td>';
 $page_content .= '</tr></table>';

 } else {
 $page_content .= '<tr><td>' . $data->chapter
 . '</td><td>'.$data->name.'</td></tr>';
 }
 }

Appendix 2___

__
Page 34

 $page_content .= '</table>';

 return $page_content ;
}

function datadictionary_variables($variable) {

 $page_content = '<p><table border="2"
valign="top"><tr><th>Reference<th>Name<th>Parameter<th>Datatype<th>Units</tr
>';

 $qry = db_query("select * from biro_datadict");
 while ($data = db_fetch_object($qry)) {
 if ($data->field_name !== $variable) {
 $page_content .=
 '<tr><td><a href="?q=datadictionary/variables/' .
$data->field_name . '">' . $data->reference . '</td>'.
 '<td><a href="?q=datadictionary/variables/'
. $data->field_name . '">' . $data->field_name .'</td>'.
 '<td><a href="?q=datadictionary/variables/'
. $data->field_name . '">' . $data->parameter . '</td>'.
 '<td><a href="?q=datadictionary/variables/'
. $data->field_name . '">' . $data->datatype . '</td>'.
 '<td><a href="?q=datadictionary/variables/'
. $data->field_name . '">' . $data->units . '</td>'.
 '</tr>';
 } else {
 $page_content .=
 '<tr bgcolor="lightgreen"><td>field_name . '">' . $data->reference .
'</td>'.
 '<td>field_name . '">' . $data->field_name
.'</td>'.
 '<td>field_name . '">' . $data->parameter .
'</td>'.
 '<td>field_name . '">' . $data->datatype .
'</td>'.
 '<td>field_name . '">' . $data->units .
'</td>'.
 '</tr>';
 }

 if ($data->field_name == $variable and $data-
>datatype=="Enumerated") {
 $enum_qry = db_query("select * from
biro_datadict_enum where reference='$data->reference' order by enum_code");

Appendix 2___

__
Page 35

 $page_content .= '<tr bgcolor="lightgreen"><td><td
colspan="4"><table bgcolor="lightyellow"
border="2"><tr><th>Code<th>Value</tr><tr>';
 while ($enum_data = db_fetch_object($enum_qry)) {
 $page_content .= "<tr><td>$enum_data-
>enum_code<td>$enum_data->value</tr>";
 }
 $page_content .= '</table></tr>';
 }
 }

 $page_content .= '</table>';

 return $page_content;
}

function datadictionary_start() {
 $indicator_query = db_query("SELECT * from biro_crossref order by
chapter");
 $page_content .= '<p><table border="1">';
 $page_content .=
'<tr><td>Chapter</td><td>Indicator</td></tr>';
 while ($data = db_fetch_object($indicator_query)) {

 $tok = strtok($data->chapter, ".");
 $path = "/" . $tok;
 while ($tok !== false) {
 $path .= "/" . $tok;
 $tok = strtok(".");
 }
 $page_content .= '<tr><td>' . $data->chapter . '</td><td>'.$data->name.'</td></tr>';
 }
 $page_content .= '</table>';

 return $page_content ;
}

function datadictionary_menu() {
 $items = array();

 $items['admin/settings/datadictionary'] = array (
 'title' => 'BIRO datadictionary module settings',
 'description' => 'Description of your BIRO settings control',
 'page callback' => 'drupal_get_form',
 'page arguments' => array('datadictionary_admin'),
 'access arguments' => array('access administration pages'),
 'type' => MENU_NORMAL_ITEM
);

 $indicator_query = db_query("SELECT * from biro_indicators order by
sortorder");

Appendix 2___

__
Page 36

 while ($data = db_fetch_object($indicator_query)) {

 $tok = strtok($data->chapter, ".");
 $path = "/" . $tok;
 while ($tok !== false) {
 $path .= "/" . $tok;
 $tok = strtok(".");
 }

 $items["datadictionary" . $path] = array(
 'title' => "Indicators",
 'description' => $data->indicator,
 'page callback' => 'datadictionary_all',
 'page arguments' => array($data->chapter),
 'access arguments' => array('access biro content'),
 'menu_name' => 'menu-datadictionary',
 'weight' => $data->sortorder,
 'type' => MENU_NORMAL_ITEM
);
 }

 $variable_query = db_query("select * from biro_datadict order by reference");
 while ($data = db_fetch_object($variable_query)) {
 $items["datadictionary/variables/".$data->field_name] = array(
 'title' => "Datadictionary",
 'page callback' => 'datadictionary_variables',
 'page arguments' => array($data->field_name),
 'access arguments' => array('access biro content'),
 'menu_name' => 'menu-datadictionary',
 'type' => MENU_NORMAL_ITEM
);
 }

 $items["datadictionary/start"] = array(
 'title' => "Indicators",
 'page callback' => 'datadictionary_start',
 'access arguments' => array('access biro content'),
 'menu_name' => 'menu-datadictionary',
 'type' => MENU_NORMAL_ITEM
);

 $items["datadictionary/variables"] = array(
 'title' => "Datadictionary",
 'page callback' => 'datadictionary_variables',
 'page arguments' => array("ALL"),
 'access arguments' => array('access biro content'),
 'menu_name' => 'menu-datadictionary',
 'type' => MENU_NORMAL_ITEM
);

 return $items;

Appendix 2___

__
Page 37

}

/**
 * Load configuration from xml-file
 *
 * @param unknown_type $form
 * @param unknown_type $form_state
 */
function load_datadict_config ($form, &$form_state)
 {

 // Checks if a string is null. If it is, return NULL.
 // If its not, return the string with "'s
 function isnull($str)
 {
 if (is_null($str)) {
 $ret = "NULL";
 } else {
 $ret = "'" . $str . "'";
 }
 return $ret;
 }

 // Return array-key for given value in associative array
 function array_key($array, $search_value)
 {
 return current(array_keys($array, $search_value));
 }

 $dbg = "DBG_DATADICT";

 watchdog($dbg,"load_datadict_config START");

 // Delete all values in the tables
 db_query("delete from biro_datadict_enum");
 db_query("delete from biro_datadict");
 db_query("delete from biro_crossref_output");
 db_query("delete from biro_crossref_stratum");
 db_query("delete from biro_crossref");

 // Load the xml-file
 $dom = new DOMDocument();
 $dom->load('sites/default/files/biro/datadictionary.xml');
 watchdog($dbg,"xml-dokument lastet");

 // Loop on items
 foreach ($dom->getElementsByTagname('item') as $item)
 {
 // Element?
 if ($item instanceof DOMElement) {
 $datadict = array();

Appendix 2___

__
Page 38

 // Loop on the childnodes
 foreach (($item->childNodes) as $itemNode) {
 if ($itemNode instanceof DOMElement) {

 // If tag is enumcodes then there should be a
subnode with enumcodes
 if ($itemNode->tagName == 'enumcodes') {
 foreach (($itemNode-
>getElementsByTagName('code')) as $enumcode) {
 $datadict['enumcodes'][$enumcode-
>getAttribute('val')] = $enumcode->nodeValue;
 }
 } else {
 $datadict[$itemNode->tagName] =
$itemNode->nodeValue;
 }
 }
 }

 // Create insert-statement for the datadictionary
 $qry = "insert into biro_datadict
(reference,field_name,parameter,datatype,clinicaldefinition,units) values (";
 $qry .= isnull($datadict['reference']) . ",";
 $qry .= isnull($datadict['fieldname']) . ",";
 $qry .= isnull($datadict['parameter']) . ",";
 $qry .= isnull($datadict['datatype']) . ",";
 $qry .= isnull($datadict['ClinicalDefinition']) . ",";
 $qry .= isnull($datadict['Units']) . ")";

 db_query($qry);

 // Create insert-statement for the enumcodes if the datatype is
enumerated
 if ($datadict['datatype'] == 'Enumerated')
 {
 foreach($datadict['enumcodes'] as $itm)
 {
 $qry = "insert into biro_datadict_enum (reference,
enum_code , value) values (";
 $qry .= isnull($datadict['reference']) . ",";
 $qry .=
isnull(array_key($datadict['enumcodes'],$itm)) . ",";
 $qry .= isnull($itm) . ")";
 db_query($qry);
 }
 }
 }
 }

 // Load the xml-file
 $dom = new DOMDocument();

Appendix 2___

__
Page 39

 $dom->load('sites/default/files/biro/WP7CrossReference.xml');

 // Loop on items
 foreach ($dom->getElementsByTagname('Indicator') as $indicator)
 {
 // Element?
 if ($indicator instanceof DOMElement) {
 $crossref = array();

 // Loop on the childnodes
 foreach (($indicator->childNodes) as $indicatorNode) {
 if ($indicatorNode instanceof DOMElement) {

 // If tag is enumcodes then there should be a subnode with
enumcodes
 if ($indicatorNode->tagName == 'Stratum') {
 $crossref['Stratum'][] = $indicatorNode-
>nodeValue;
 } else if ($indicatorNode->tagName == 'Output') {
 $crossref['Output'][] = $indicatorNode-
>nodeValue;
 } else {
 $crossref[$indicatorNode->tagName] =
$indicatorNode->nodeValue;
 }
 }
 }

 $qry = "insert into biro_crossref
(chapter,target,name,indicatortext,numerator,denominator,source,algorithmcalculation,
algorithmoutput) values (";
 $qry .= isnull($crossref['Chapter']) . ",";
 $qry .= isnull($crossref['Target']) . ",";
 $qry .= isnull($crossref['Name']). ",";
 $qry .= isnull($crossref['IndicatorText']). ",";
 $qry .= isnull($crossref['Numerator']). ",";
 $qry .= isnull($crossref['Denominator']). ",";
 $qry .= isnull($crossref['Source']). ",";
 $qry .= isnull($crossref['AlgorithmCalculation']). ",";
 $qry .= isnull($crossref['AlgorithmOutput']). ")";
 db_query($qry);

 if (!is_null($crossref['Stratum'])) {
 foreach ($crossref['Stratum'] as $stratum) {
 $qry = "insert into biro_crossref_stratum
(chapter,stratum) values (";
 $qry .= isnull($crossref['Chapter']) . ",";
 $qry .= isnull($stratum) . ")";
 db_query($qry);
 }
 }

Appendix 2___

__
Page 40

 if (!is_null($crossref['Output'])) {
 foreach ($crossref['Output'] as $output) {
 $qry = "insert into biro_crossref_output
(chapter,output) values (";
 $qry .= isnull($crossref['Chapter']) . ",";
 $qry .= isnull($output) . ")";
 db_query($qry);
 }
 }
 }
 }

}

/**
 * Implement hook_admin
 *
 * @return unknown
 */
function datadictionary_admin() {
 watchdog("DEBUG","datadictionary_admin");

 $form['Load'] = array(
 '#type' => 'submit',
 '#value' => 'Load datadictionary-file',
 '#submit' => array('load_datadict_config'),
);

 return system_settings_form($form);
}

